PAGE
2

Computational Geometry

1 What Computational Geometry is.

Computational Geometry learns how to solve geometric problems by using numeric models and algorithms. It investigates how to represent geometric objects in numeric form and produces numeric algorithms to solve geometric problems. Computer-based fields of Geometry such as Computer Graphics, 3D-games, Computer Engineering and Computer-Aided Design (CAD) are actually parts of the Computational Geometry.

Classical Geometry operates with visual images. To solve a problem of the Classical Geometry, one should make intermediate geometrical constructions by using a ruler and a compasses. Computational Geometry operates with numeric representation of objects. The procedure of representing objects in numeric form is named numeralisation.

To solve a problem of the Computational Geometry, one should solve some equations and calculate some values. A solution can be a number, coordinates of a point or a group of points.

EXAMPLE:
A problem "Do two circles intersect ?":
	Classic Geometry
	Computational Geometry

	
[image: image1.wmf]

P

1

B

A

P

2

	K =
[image: image2.wmf]2

2

)

(

)

(

a

b

a

b

y

y

x

x

-

+

-

; // K = |AB|
if Ra-Rb < K < Ra+Rb return "YES";
else return "NO";

Computational Geometry is based on results obtained in the Classical Geometry, but it focuses especial attention on problems, which require to take into account large amounts of geometric objects. Such problems usually cannot be solved by classical methods, they require to use a computer.

2 Vectors

Vectors are fundamental geometric objects as well as Points. All other geometric objects can be interpreted as "sets of points, that meet some conditions". So that let's learn a little about Vectors.

2.1 Conception

The next material discesses 2-dimensional space also known as "plane".
Points are locations on a plane. Numerically Points are represented by pairs of numbers, which are named "X component" and "Y component" of a point. A common designation is the following:

Point A: (A {ax, ay}
for example: A{1,2}

Vectors can be introduced as difference between points. Suppose we have points A{ax,ay} and B{bx,by}. These points constitute the vector
[image: image3.wmf]AB

, which is geometrically interpreted as an oriented segment between points and A and B. Numerically a vector is represented by a pair of numbers (like a point), which are calculated as differences between appropriate components of points B and A.

	
[image: image4.wmf]V

{xv, yv} =
[image: image5.wmf]AB

 {xb-xa, yb-ya}
	
[image: image6.wmf]U

{xu, yu} =
[image: image7.wmf]BA

 {xa-xb, ya-yb}

	
[image: image8.emf]

A

B

V = A B

	
[image: image9.emf]

A

B

U = BA

2.2 Features

Primary characteristics of a vector are length and direction. Length of a vector
[image: image10.wmf]AB

 is the length of the segment [AB]. Direction of a vector defines the angle between the X-axis and the oriented segment [AB]:

	Length:
	|
[image: image11.wmf]AB

| = |AB| =
[image: image12.wmf]2

2

)

(

)

(

a

b

a

b

y

y

x

x

-

+

-

	
[image: image13.emf]

A

B

V = A B

x a x b

y a

y b

	Angle :
	cos() =
[image: image14.wmf]|

|

AB

x

x

a

b

-

,
sin() =
[image: image15.wmf]|

|

AB

y

y

a

b

-

	

The vector that has all components equal to zero is named zero vector. It has zero length and indefinite direction:
	Zero vector:
	
[image: image16.wmf]O

{0,0}

	Length:
	|
[image: image17.wmf]O

| = 0

	Direction:
	cos() = 0/0 – undefined,
sin() = 0/0 – undefined

2.3 Operations

The following operations with points are defined:
· point – point = vector:
A – B =
[image: image18.wmf]AB

 = {xb-xa, yb-ya}

· point + vector = point:
A +
[image: image19.wmf]V

 = B = {xa+xv, ya+yv}

The following operations with vectors are defined:

· Addition
	
[image: image20.wmf]S

 =
[image: image21.wmf]V

 +
[image: image22.wmf]U

 = {xv + xu, yv + yu}

[image: image23.wmf]S

{sx, sy} =
[image: image24.wmf]i

å

V

 sx=
[image: image25.wmf]i

x

v

,

å

, sy=
[image: image26.wmf]i

y

v

,

å

	
[image: image27.emf]

A 1

A 2

A 3

A 4

A 5

A 6

· Substraction:
	
[image: image28.wmf]AB

 = {xb – xa, yb – ya}

[image: image29.wmf]AC

 = {xc – xa, yc – ya}

[image: image30.wmf]BC

 =
[image: image31.wmf]AC

-
[image: image32.wmf]AB

 = {xc – xb, yc – yb}
	
[image: image33.emf]

A

C

B

· Multiplication by a number:
 z ·
[image: image34.wmf]V

 = {z·xv, z·xv},
[image: image35.wmf]V

/z = {xv/z, xv/z}
-1 ·
[image: image36.wmf]V

 = -
[image: image37.wmf]V

(negation of a vector)
 0 ·
[image: image38.wmf]V

 =
[image: image39.wmf]O

 {0, 0}
 z ·
[image: image40.wmf]O

 =
[image: image41.wmf]O

 {0, 0}
· Normalization (i.e. producing a vector of the unit length):

[image: image42.wmf]u

 =
[image: image43.wmf]V

/|
[image: image44.wmf]V

| => |
[image: image45.wmf]u

|=1 -
[image: image46.wmf]u

 is a normalized vector (unit vector)

2.4 Scalar Product and Cross Product of Vectors

Vectors keep information about direction, so that vectors can be used to evaluate angles There are vector-based operations which
Suppose we have two vectors a={xa,ya} and b={xb,yb}. Let's designate an angle between vectors as , an angle between a and X-direction as a, an angle between b and X-direction as b:

[image: image47.wmf]

O

B

X

Y

A

x

b

x

a

y

b

y

a

f

f

a

f

b

Let's express sin() and cos():

cos()=cos(b -a)=cos(b)·cos(a)+sin(b)·sin(a)=xb/b·xa/a + yb/b·ya/a=

=(xb·xa+yb·ya)/(a·b)

sin()=sin(b -a)=sin(b)·cos(a)-cos(b)·sin(a)=yb/b·xa/a - xb/b·ya/a=

=(yb·xa-xb·ya)/(a·b)

Expressions that are terms of these fractions are very important in Mathematics. They are treated as vector operations:

Scalar Product of Vectors:

a·b = xa·xb + ya·yb = |a|·|b|·cos(),
where  is angle between vectors a and b
Cross Product of Vectors:

a(b = xa·yb - ya·xb = |a|·|b|·sin(),
where  is angle between vectors a and b

Most important features of Vector operations:

	Scalar Product
	Cross Product

	cos() = a·b / (|a|·|b|)
	sin() = a(b / (|a|·|b|)

	a·a = |a|2
	a(a = 0

	a·b = b·a
	a(b = -b(a

	(t·a)·b = a·(t·b) = t·(a·b)
	(t·a)(b = a((t·b) = t·(a(b)

	a·0 = a(0 = 0

2.4.1 Triangle area

[image: image48.wmf]

A

B

h

C

f

SΔABC = ½ |AB|·h = ½ |AB|·|AC|sin() = ½ AB(AC
Oriented Angle

The expression of cross product is not symmetric for vectors:

a(b = xa·yb - ya·xb

b(a = ya·xb - xa·yb = -(xa·yb - ya·xb) = -a(b
As a(b = |a|·|b|·sin(), we must conclude that the angle between b and a is negative to the angle between a and b (!). In Mathematics, the conception of Oriented Angle is introduced:

· the angle between vectors should be measured between - and .

· the absolute value of the angle equals to the value of shortest angle of rotation to superpose these vectors

the sign of the angle depends on the sense of rotation: for counterclockwise rotation, the sign is positive, for clockwise rotation, the sign is negative.

[image: image49.wmf]

Positive rotation

a

b

a

b

Negative rotation

[image: image50.wmf]

O

X

Y

f

 =

0

f

 =

-

p/4

f

 = +

p/4

f

 = +

p/2

f

 = +

p

f

 =

-

p/2

f

 =

-

p

f

 > 0

f

 < 0

Dependency from angle between vectors:

	
	Angle
	Scalar Product
	Cross Product

	Clockwise angle
	 < 0
	Can be >0 or <0
	Always <0

	Counterclockwise angle
	 > 0
	Can be >0 or <0
	Always <0

	a and b produce an acute angle
	0 <  < /2
	0 < a·b < |a|·|b|
	0 < a(b = |a|·|b|

	a and b produce an obtuse angle
	/2 <  < 
	-|a|·|b| < a·b < 0
	0 < a(b = |a|·|b|

	a and b are parallel
	 = 0
	a·b = |a|·|b|
	a(b = 0

	a and b are perpendicular
	 = /2
	a·b = 0
	a(b = |a|·|b|

	a and b are opposite
	 =  or  = 
	a·b = -|a|·|b|
	a(b = 0

3 Analysis of Mutual Location of three Points

Problem specification: your program receives coordinates of three points as an input (6 numbers totally). It must analyze mutual location of these points and output the integer number, which is interpreted as a code of the situation:

	How points are located:
	Output code

	All points coincide (are same, have same coordinates)
	0

	Only two points coincide
	1

	Points are different and are situated on same straight line
	2

	Points constitute an acute tirangle
	3

	Points constitute a right triangle
	4

	Points constitute an obtuse triangle
	5

3.1 [image: image71.wmf]

A

B

C

a

Ideas

How to determine type of a triangle?

From Classical Geometry:

 |BC|2 = |AB|2+|AC|2-|AB|·|AS|·cos()
	Acute triangle
	[image: image72.wmf]

A

B

C

a

	cos()>0 => |BC|2 < |AB|2+|AC|2

	Right triangle
	
	cos()=0 => |BC|2 = |AB|2+|AC|2

	Obtuse triangle
	
	cos()<0 => |BC|2 > |AB|2+|AC|2

To distinguish triangles, we require only squares of their lengthes, which can be computed by scalar multiplication of appropriate vectors to itself: |AB|2 = AB·AB and so on. The goodness of these expression is that it does not require to calculate any functions, which are very slow to calculate.

3.1.1 How to distinguish triangles from other cases?

Triangles have positive area and non-zero oriented area: S∆ = AB(AC ≠ 0. In all other cases, the cross product is equal to zero: AB(AC = 0.

These situations can be treated as "zero area triangles:"

[image: image51.wmf]

smaller area

smaller area

zero area

Three coincident

points

smaller area

smaller area

zero area

Two coincident

points

Points situated

on same line

3.1.2 How to differentiate between "one", "two" and "three" points?

	All points coincide
	|AB|=|AC|=|BC|=0
	|AB|+|AC|+|BC|=0
	|AB|2+|AC|2+|BC|2=0

	Only two points coincide
	|AB| = 0
|AC|,|BC|≠0
	|AB|·|AC|·|BC|=0
	|AB|2·|AC|2·|BC|2=0

	Different Points
	|AB|,|AC|,|BC|≠0
	Neither of above expressions is zero !

3.2 Algorithm

3.2.1 Block-scheme

[image: image52.wmf]

Input A,B,C

Calculate

AB

,

AC

, a

2

, b

2

, c

2

AB

Ä

AC

 = 0 ?

 a

2

+ b

2

+ c

2

 = 0?

 a

2

· b

2

· c

2

 = 0 ?

"2 points"

"1 point"

"line"

d=max{a

2

, b

2

, c

2

}

f = a

2

+ b

2

+ c

2

f <

 2d ?

f > 2d ?

"right

D

"

"acute

D

"

"obtuse

D

"

yes

yes

yes

yes

yes

no

no

no

no

no

3.2.2 Pseudo-program

1. >> A, B, C

2. calculate AB, AC, a2=|BC|2, b2=|AC|2, c2=|AB|2
3. if (AB (AC ≠0) (some triangle), then goto (8)

4. if (a2*b2*c2≠0) then >> "line"

5. if (a2+b2+c2=0) then >> "point"

6. >> "segment"

7. STOP program

8. d = max {a2, b2, c2}, f = a2+b2+c2
if (f>2d) >> "acute"

9. if (f<2d) >> "obtuse"

10. >> "right"

11. STOP program

3.2.3 Analisis of the solution

The resulting program demonstrates the optimal solution of the program, because:

12. It uses totally only 5 comparisons to distinguish 6 mutually exclusive alternatives. This is the minimal possible amount of comparisons.

13. It allows to obtain the result by making the minimum amount of comparisons for every particular input data:

[image: image53.wmf]

1 to 5 comparions

2 or 3 comparisions

4 Line equation

A well-known equation of a straight line is the following: y = k·x + b . But this equation is not universal, for example, it cannot be used to describe vertical lines: x = const, y - any. For this and some other reasons, it is not convenient for computing.

4.1 Universal line equations

Now we will examine universal line equations. These equations define conditions that are satisfied for every point depending to the line and are not satisfied for other points.

4.1.1 Canonical line equation

a·x + b·y + c = 0
This line equation is widely used in Algebra.

4.1.2 Line through two given points

Suppose we have two points A and B. Any point situated on the line AB can be produced from these two points:

For any real number t, the point M derived as: OM = t·OA + (1-t)·OB, belongs to the line AB: M(AB.

[image: image54.wmf]

A

t < 0

O

C

t = 1

t = ½

B

t = 0

t > 1

If we bound the value of t by the range from 0 to 1, the equation will describe the line segment having endpoints A and B.
4.1.3 Using the direction vector

A natural definition of a line is a follows:

For the given point A and the vector e, which is named "line direction", and any real number t, the point M derived as: OM = OA + t·e, belongs to the line AB: M(AB.

[image: image55.wmf]

A

e

t = 0

t =

-

1

t = 1

t = 2

4.1.4 Using the normal vector

Vector n is named the normal to the line AB in case:

14. has non-zero length: |n| ≠ 0
15. n is perperdicular to the line (as well as any vector being parallel to that line): n·AB = 0

[image: image56.wmf]

B

n

A

A line can be effectively defined through its normal: for the given point A and the vector n, a point M belongs to the line that is perpendicular to n and passes through A in case: n·OM = n·OA. The line definition can be unified: because n·OA is the fixed value, it can be assinged as a condition (instead of the point A !):

point M belongs to the line (defined by the normal n and the number D) in case n·OM = D.

Actually, the normal n defines a sort of scale, and D defines level on its scale:

[image: image57.wmf]

A

O

n

n·OA

 = 0

n·OA

 =

-

1

n·OA

 = 1

n·OA

 = D

n·OA

 = D+1

4.1.5 Transformation different line equations to each other

16. "Normal" <==> "Canonical" and vise versa:

n·OM = D => n·OM - D = 0 => xn·xM + yn·yM – D = 0

ax+by+c=0 => n = {a,b}, D = -c
17. "Normal" <==> "Direction"

n (e => xn = ye, yn = -xe
18. "Direction" <==> "Two points"

e = AB

5 Distance between geometrical figures

Distance between geometrical figures is treated as the shortest distance between pairs of points, which belong to different figures.

[image: image58.wmf]

The problem of finding distance between figures usually can be solved by reducing the complexity of the problem. Usually, we can quickly find one or few candidates to nearest points in the first figure, and then

5.1 Line and Point

A straight line can be given by several different ways. We will examine only two most important of them: (1) a line is given by the normalized direction vector and (2) a line is given by the normalized normal vector.

Suppose we have a point B and a some line L for which we know the normalized direction vector e, the normalized normal vector n and the point A situated on that line. From classic geometry, we know that distance between a line and a point equals to the length of the segment produced by the point and its projection to the line (P):

[image: image59.wmf]

f

P

|BP| = distance

A

a

B

n

As it seen from the picture, the distance can be expressed by two ways:

H = |BP| = |AB|·sin() = |AB(e|
H = |BP| = |AB|·cos() = |AB·n| (actually )
6 Geometric constructions

In the Computational Geometry, geometric constructions can be performed as well. The result of computational geometric constructions can be: coordinates of a desired point, endpoints of a desired segment, a normal and a point of a desired line and so on.

6.1 Rotation of a Vector

It is an simple example of computational geometric constructions. Suppose we have the vector a, and we must rotate it to the given oriented angle . In this task, the answer will be the vector b, i.e. components of the desired vector. Now, we will investigate the algorithm, which allows to compute components of the resulting vector.

Let's designate the angle between a and the ex (X-direction) as a, the angle between b and the ex as b:

[image: image60.wmf]

b

X

-

direction

a

f

f

a

f

b

xa=|a|·cos(a), ya=|a|·sin(a)
xb=|b|cos(b)=|a|cos(a+)=|a|cos(a)·cos()-|a|sin(a)·sin()=xa·cos()-ya·sin()
yb=|b|sin(b)=|a|sin(a+)=|a|sin(a)·cos()+|a|sin(a)·cos()=ya·cos()+xa·sin()

In case the angle  is given only by radians or by degrees, we have no other way than to calculate values of sin() and cos(). In case the angle f is actually given indirectly, we can avoid expensive calculations.

For example, we can rotate the vector a to the angle equal to the angle between two other vectors p and q: at first, we will produce normalized vectors u = p/|p| and v = q/|q|. By using these vectors, we can qucikly calculate values of sin() and cos():

sin() = u(v

(or v(u – depending of the given angle: "from p to q" or "from q to p")
cos() = u·v = v·u
(independent from the angle orientation)

Finally:

xb = xa·u·v - ya·u(v
yb = ya·u·v + xa·u(v
6.2 Computing a tangent Line to a Circle

Let's investigate a more coplicated problem of constructing a tangent Line to a Circle. Suppose we have given the point A and the circle given by the center Q and the radius R. We should find an equation of a tangent to the given circle that passes the point A.

6.2.1 Analysis

First of all, we must distinguish the mutual location of the curcle and the point:

[image: image61.wmf]

Q

A

2

Q

Q

A

1

A

3

	Point A(1) is inside the circle
	|AQ| < R
	A tangent line does not exist

	Point A(2) is situated on the circle
	|AQ| = R
	There is one tangent line, and it is perpendicular to the AQ

	Point A(3) is outside the circle
	|AQ| > R
	There are two different tangent lines

6.2.2 Point A is situated on the circle

The vector AQ is perpendicular to the tangent line, and the tangent line passes the point A. So that, the line can be expressed by the normal and one point:

points M: OM·QA = OA·QA <=> QM·QA = QA·QA = |QA|2
6.2.3 Point A is outside the circle

Let's now derive the equation of one of tangent lines. Suppose point P is the point of contact of the circle and the tangent line:

[image: image62.wmf]

Q

A

P

R

AP

AQ

f

The triangle AQP is the right triangle, so that:

|AP|2 = |AQ|2 - |PQ|2 = |AQ|2 - R2 = AQ·AQ – R2

sin((A) = |PQ|/|AQ| = R/|AQ| = R/sqrt(AQ·AQ)

cos((A) = |AP|/|AQ| = sqrt(|AP|2/|AQ|2) = sqrt(1-R2/(AQ·AQ))

Now, we have computed trigonometric functions of the angle between AQ and AP. But the vector AP is the directing vector of the tangent line! So that if we rotate the vector AQ to the angle equal to the (A, we will obtain the directing vector of the tangent line.

An additional note: one of tangent lines is obtained if we rotate the vector AQ to the positive direction (counterclockwise direction) and the second one is obtained if we rotate the vector AQ to the negative direction (clockwise direction).

6.2.4 Finding the point of contact

Now, let's compute coordinates of the point of contact (for one of tangent lines). After rotating the vector AQ to the angle (A, we will obtain some vector AS, which is parallel to the vector AP but has another length:

|AS| = |AQ|, |AP| = |AQ|·cos((A) = sqrt(AQ·AQ – R2)

AP = AS·cos((A)

So that we can calculate coordinates of the point P:

P = A + AP = A + AS·cos((A)

7 Optional Chapters

7.1 Curcle and Point

The most simple case is distance between a Curcle and a Point. Suppose we have a point A and a circle given by its center B and radius R.

We should find distance between the point and the center of the circle and then compare this value with raduis.

For a Circle (periphery of the circle):

distance H = | |AB|-R |

For a Round (solid circle):

distance H = max { 0, |AB|-R }

7.2 Segment and Point

It's a slightly more complicated problem than the previous one: the segment is bounded in space, so that the projection of the point to the line can lie outside the segment. In this case, a endpoint will be the nearest point to the given point. Suppose we have a segment having endpoints A and B, and a point C:

[image: image63.wmf]

B

A

C

2

C

1

C

3

P

Actually, we need only to distinguish cases when the nearest point is projection (case 1) from cases when the nearest point is endpoint (cases 2 and 3). Let's draw a line perpendicular to the segment and passing the endpoint A. In one of half-spaces the angle between AC and AB is between –/2 and /2 (and hence AB·AC >0). In another half-space the value of AB·AC is negative. On the line: AB·AC = 0.

We can to produce same analysis for both points A and B:

[image: image64.wmf]

A

cos (

f

a

) < 0

cos (

f

a

) < 0

cos (

f

a

) > 0

cos (

f

a

) > 0

C

1

C

2

f

a

A

cos (

f

b

) < 0

cos (

f

b

) < 0

cos (

f

b

) > 0

cos (

f

b

) > 0

C

3

C

1

f

b

	Condition
	Nearest Point
	How to calculate the distance

	AB·AC ≤ 0
	endpoint A
	H = |AC|

	BA·BC ≤ 0
	endpoint B
	H = |BC|

	AB·AC > 0
and
BA·BC > 0
	Point P
= projection of C to the line
	H should be calculated as distance between point and line:

H = |AB·AC| / |AB|

7.2.1 Oriented Area

Here’s one more innovation in Geometry due to vectors – an Oriented Area. An area of a quadrangle (or a triangle) constructed by two vectors a and b is equal to:

[image: image65.wmf]

A

B

C

D

f

f

SABCD = |a|·|b|·|sin()| = |a(b|,
SABCD > 0
quadrangle ABCD

The triangle ABD is exactly the half of the quadrangle ABCD. So that its area is a half of quadrangle area:
SABD = ½·|a|·|b|·|sin()| = ½·|a(b|,
SABD > 0
triangle ABD
If we omit module “|..|” from the area expression, we will obtain the oriented area, which can be negative as well as positive:

SABCD = |a|·|b|·sin() = a(b

oriented quadrangle ABCD
SABD = ½·|a|·|b|·sin() = ½·a(b

oriented triangle ABD
The sign of this value depends on the order the vertices are listed: if vertices were traversed in the counterclockwise rotation, oriented area is positive. If vertices are traversed in the clockwise rotation, the oriented area is negative:

[image: image66.wmf]

POSITIVE AREA

NEGATIVE AREA

7.2.2 Area of a Polygon

The Oriented Area can be effectively used to calculate area of polygons. Suppose we need to compute an area of the convex polygon having N+1 vertices: {A0, A1, A2, ... AN}. This polygon can be triangulated, i.e. splitted into triangles: ∆A0A1A2, ∆A0A2A3, ∆A0A3A4, ...

[image: image67.wmf]

A

0

A

1

A

2

A

3

A

4

A

n

A

n

-

1

The area of the polygon equals to the sum of areas of constituent tirangles:

(S∆AoA1A2

SAo..An =
(+ S∆AoA2A3

(+ S∆AoAn-1An
Now suppose we begin to press some vertex (suppose A2) inside the polygon. At some moment the polygon will become concave:

[image: image68.wmf]

A

0

A

1

A

2

A

3

A

4

A

n

A

n

-

1

In case we use a traditional concept of non-oriented area, we must distinguish that the polygon is not convex anymore and change the calculation:

(S∆AoA1A2

SAo..An =
(- S∆AoA2A3

(+ S∆AoAn-1An
If we use the concept of oriented area, we need not to change the calculation. Indeed, the triangle ∆A0A1A2 will change the traversal orientation and its oriented area will automatically become negative!

[image: image69.wmf]

A

0

A

1

A

2

A

3

A

4

A

n

A

n

-

1

Now, we can produce a common formula for computing an area of any polygon:

SAo..An = |  S∆AoAiAi+1 | = ½|A0Ai(A0Ai+1| = ½|(xi-x0)(yi+1-y0)-(xi+1-x0)(yi-y0)|

The above formula is not the best, we can provide twice computing acceleration:

SAo..An = ½ | (xi+1-xi)(yi+1+yi) |

This expression can be obtained by removing parentheses and re-combining terms. But the faster and better way is to use oriented area again: We can construct additional trapeziums for each side of the polygon. If we traverse vertices of each trapezium so that sides of the polygon become traversed in same direction, we will obtain the oriented area of the polygon by summing oriented areas of supplementary trapeziums:

[image: image70.wmf]

A

0

A

1

A

2

A

3

A

4

A

n

A

n

-

1

7.2.3 Extra minimazing amount of comparisons in the problem of three points

We use "max of three values" function, which actually require two comparisons (!). We can avoid using of that function. First, let's note that:
a2+b2 <?> c2 <=> a2+b2-c2 <?> 0
Suppose c is the maximum side. Only a2+b2-c2 expression can be equal to zero or less. Expressions a2+c2-b2 and b2+c2-a2 are always positive. So that:

sign(a2+b2-c2) = sign((a2+b2-c2)·(a2+c2-b2)·(b2+c2-a2))
Final modifications:

19. w = (a2+b2-c2)·(a2+c2-b2)·(b2+c2-a2)
20. if (w>0) >> >> "acute"
21. if (w<0) >> >> "obtuse"
22. >> "right"
8 Exclusions from the Chapter 2

8.1 Normed Spaces

A general way to represent geometric objects in numbers is to use Normed Spaces. In Mathematics, a space is named Normed Space in case it meets following conditions:

· Each Point of a space is represented by a set of numbers

· There is a coordinate system in the space

· It is defined how to calculate distance between two points, for any couple of points of the space.

8.1.1 Points

In a Normed Space, space consists of basic elements named Points. Points are locations in a space. Points are represented by a group of real numbers (named "coordinates"):

point A = {a1, a2, a3, ... an}
The amount of numbers is named Space Dimension. Hereafter we will discuss only the 2-dimensional Space (briefly referred to as 2D-space). By a tradition, 2D-points are designated as follows:

point A = {xa, ya},
point B = {xb, yb}
8.1.2 Vectors

Together with Points, Vectors are the fundamental geometric objects. Vectors are differences between Points. If we have two points A and B, the vector AB is the object containing differences of coordinates of those points:

vector AB = difference A-B = {xb-xa, yb-ya}

Vectors can be assigned by two ways:

1. vector AB – defined as a difference that is produced from given points A and B

2. vector a – defined as a difference but points are not specified

8.1.3 Coordinate System

Coordinate System includes: Zero Point and two Directing Vectors:

zero point:
O = {0, 0}

X-direction:
ex = {1, 0}

Y-direction:
ey = {0, 1}

8.1.4 Distance

Distance is a mutual remoteness (difference) of two objects expressed by a single number. Distance between Points A and B is designated as |AB|.

Properties of the Distance:

· A = B <=> |AB| = 0

A ≠ B <=> |AB| > 0

· |AB| = |BA|

· In Normed Spaces, Distance meets the triangle inequality:

For any three points A, B, C the following rule must be satisfied:

|AB| <= |AC| + |BC|
In Euclidian Spaces, Distance between two Points is calculated by the following formula:

N-dim:
|AB| = Sqrt (Sum (bi-ai)2)

2D:
|AB| = Sqrt ((xb-xa)2+(yb-ya)2)
The Euclidian Distance meets the triangle inequality.

8.1.5 Length of a Vector

Length of a vector, or its module, is determined as distance between points, for which that vector defines difference. Module of a vector a is designated as |a|:

N-dim:
|a| = Sqrt (Sum ai2)
2D:
|a| = Sqrt (xa2 + ya2)
Zero vector: 0 = {0, 0}

Zero vector has zero length: |0| = 0

8.2 Advanced Vector operations

There are several advanced vector operations, which are very useful for Computational Geometry. These operations allow to avoid direct calculation of trigonometric functions (SIN, COS, TAN). This feature provides an ability to create quick geometric computations, because trigonometric functions are very difficult to calculate.

For example, the 2-nd loop will work approximately one hundred faster than the 1-st one:

for (i=0; i<10000000; i++) x=sin(y);

for (i=0; i<10000000; i++) x=a*b+c*d;

� EMBED Word.Picture.8 ���

y

x

O

_1182250142.unknown

_1182250656.unknown

_1182253728.doc

A1

A2

A3

A4

A5

A6

_1182255876.unknown

_1182255891.unknown

_1182255902.unknown

_1182254479.doc

A

C

B

_1182250735.unknown

_1182250943.unknown

_1182250958.unknown

_1182250708.unknown

_1182250245.doc

ya

xb

xa

yb

V = AB

B

A

_1182250552.unknown

_1182250581.unknown

_1182250390.unknown

_1182250203.unknown

_1182250221.unknown

_1182250189.unknown

_1181734781.doc

O

X

Y

 = 

 = -

 = +

 = +

 = +

 = -

 = -

 > 0

 < 0

_1182237086.unknown

_1182237318.doc

[image: image1]

A

B

V = AB

_1182249655.unknown

_1182249697.unknown

_1182237420.doc

A

B

U = BA

_1182236500.unknown

_1182236550.unknown

_1182237023.unknown

_1182236521.unknown

_1181735063.doc

Positive rotation

a

b

Negative rotation

b

a

_1151168057.doc

B

n

A

_1151176395.doc

A

t < 0

O

C

t = ½

t = 1

B

t = 0

t > 1

_1151193958.doc

A

B

h

C



_1151194690.doc

A0

A1

A2

A3

A4

An

An-1

_1151195452.doc

A0

A1

A2

A3

A4

An

An-1

_1181734136.doc

Input A,B,C

Calculate AB, AC, a2, b2, c2

AB (AC = 0 ?

 a2 + b2 + c2 = 0?

 a2 · b2 · c2 = 0 ?

"2 points"

"1 point"

"line"

d=max{a2, b2, c2}�f = a2 + b2 + c2

"obtuse "

"acute "

"right "

f > 2d ?

f < 2d ?

yes

yes

yes

yes

yes

no

no

no

no

no

_1151195154.doc

A0

A1

A2

A3

A4

An

An-1

_1151194507.doc

A0

A1

A2

A3

A4

An

An-1

_1151176882.doc

_1151183102.doc



P

|BP| = distance

A



B

n

_1151170621.doc

b

X-direction

a



a

b

_1151171823.doc

Q

A

P

R

AP

AQ



_1151173662.doc

B

A

C2

C1

C3

P

_1151176034.doc

A

cos (a) < 0

cos (a) < 0

cos (a) > 0

cos (a) > 0

C1

C2

a

b

C1

C3

cos (b) > 0

cos (b) > 0

cos (b) < 0

cos (b) < 0

A

_1151170751.doc

Q

A2

Q

Q

A1

A3

_1151168991.doc

A

O

n

n·OA = 0

n·OA = -1

n·OA = 1

n·OA = D

n·OA = D+1

_1151157689.doc

O

B

X

Y

A

xb

xa

yb

ya



a

b

_1151164832.doc

POSITIVE AREA

NEGATIVE AREA

_1151167008.doc

A

e

t = 0

t = -1

t = 1

t = 2

_1151164382.doc

A

B

C

D





_1151132179.doc

1 to 5 comparions

2 or 3 comparisions

_1151155859.doc

P1

B

A

P2

_1151132003.doc

Three coincident points

smaller area

zero area

smaller area

zero area

smaller area

smaller area

Two coincident points

Points situated on same line

_1150999193.doc

A

B

C



