
1.2 Constructing the lcp-table in Linear Time

Next, we will present a linear time algorithm (owing to Kasai et al. [KLA+01]) that

computes the lcp-table from the suffix array and its inverse. The algorithm starts with

the longest suffix Si = S0 of S (so i = 0), computes j := suftab−1[i] and then lcptab[j]
by a left-to-right comparison of the characters in Ssuftab[j−1] and Ssuftab[j] = Si. The

same is done for the other suffixes Si of S by incrementing i successively. However,

the algorithm avoids many redundant character comparisons. The idea is as follows:

Consider two suffixes av and aw which directly follow each other in the suffix array.

Assume that av is lexicographically smaller than aw. Suppose that the length of the

longest common prefix of av and aw is �. Then it is easy to see that the length of the

longest common prefix of v and w is at least of length � − 1. How can we exploit this

fact to compute the length of the longest common prefix of w with its direct predecessor

suffix in the suffix array? Note that the direct predecessor is not always v. But we

know that v is lexicographically smaller than w and all suffixes between v and w have a

common prefix of length at least � − 1. Hence the longest common prefix of w with it

direct predecessor is at least of length �− 1. The following Lemma precisely states this

observation.

Lemma 1 lcptab[suftab−1[i]] ≥ lcptab[suftab−1[i− 1]]− 1.

Proof: Let h and j be the indices such that h = suftab−1[i − 1] and j = suftab−1[i].
That is, in the suffix array of S, the suffixes Si−1 and Si occur at positions h and j,

respectively. We have to show lcptab[j] ≥ lcptab[h] − 1. First note that suftab[h] =
suftab[suftab−1[i − 1]] = i − 1. Let k = suftab[h − 1]. We proceed by case anal-

ysis. If Sk = Ssuftab[h−1] and Si−1 = Ssuftab[h] start with different characters, then

lcptab[h] = 0. Since no entry entry in table lcptab is negative, we have lcptab[j] >

−1 = lcptab[h] − 1. Now suppose that Sk and Si−1 start with the same character, say

a. Let ω = lcp(Sk, Si−1). Because ω is the longest common prefix of Ssuftab[h−1] and

Ssuftab[h], we have |ω| = lcptab[h] ≥ 1. Clearly, ω = aω � for some string ω�. Note that

ω� is a common prefix of Sk+1 and Si = Ssuftab[suftab
−1[i]] = Ssuftab[j]. Since the suffixes

of S are lexicographically ordered in its suffix array and Sk+1 ≺ Si (this follows from

Sk = aSk+1 ≺ aSi−1 = Si), ω� must be a common prefix of all suffixes between the

indices suftab−1[k + 1] and suftab−1[i] = j in the suffix array. In particular, ω � is a

common prefix of Ssuftab[j−1] and Ssuftab[j]. Consequently, lcptab[j] ≥ |ω �| = |ω| − 1 =
lcptab[h]− 1.

According to the preceding lemma, if � = lcptab[suftab−1[i−1]] is known, then one can

skip �−1 character comparisons in the computation of lcptab[suftab−1[i]]. This implies

the correctness of Algorithm 1.

Theorem 1 Given a string S of length n, its suffix array, and its inverse suffix array,

4

Algorithm 1 Computation of the lcp-table from the suffix array and its inverse.

� := 0
for i := 0 to n− 1 do

j := suftab−1[i]
if j > 0 then

k := suftab[j − 1] /* Ssuftab[k] directly precedes Ssuftab[i] in suftab */

� := max{�− 1, 0} /* the suffixes have a common prefix of length ≥ �− 1 */

while S[k + �] = S[i + �] do � := � + 1
lcptab[j] := �

Algorithm 1 constructs the lcp-table in time O(n).

Proof: Algorithm 1 performs at most 2n character comparisons because in every every

execution of the for-loop at most one redundant character comparison is made. This is

because � ≤ n and the total decrease of � is ≤ n.

1.3 A Linear Time Suffix Tree Construction

Since we have now clarified how to construct the enhanced suffix array from suffix trees,

we consider the other direction. We will show how the suffix tree of a string S$ can be

build in linear time from its suffix array and its lcp-table. In Algorithm 2, we assume

that every node v in the suffix tree has a pointer v.parent to its parent and a field v.d

that stores its distance from the root in characters. Moreover, the label of an edge (v, w)
in the suffix tree is denoted by (v, w).label.

In Algorithm 2, makenewleaf (j) creates a new leaf labeled with the leaf number j.

Furthermore, splitedge(w, v, �) takes an edge (w, v) and a natural number � with � <

|(w, v).label| as input, creates a new interior node w�, and splits the edge (w, v) into

two edges (w, w�) and (w�, v), i.e., w�.parent := w and v.parent := w�. The label

S$[j . . . k] of the edge (w, v) is also split into two labels (w, w�).label := S$[j . . . j +�]
and (w�, v).label := S$[j + � + 1 . . . k]. Because of the former, w�.d := w.d + � is the

distance of w� from the root.

We will show next that Algorithm 2 runs in O(n) time. Let Ti denote the A+-tree

for all suffixes suftab[0], . . . , suftab[i], such that the edges are ordered according to the

alphabetic order. That is, after the first iteration of the for loop, T0 consists of the root

and a single leaf labeled suftab[0], and an edge from the root to this leaf labeled labeled

Ssuftab[0]. Inserting the new suffix Ssuftab[i+1] into Ti requires walking up the rightmost

path in Ti. Each edge that is traversed ceases to be on the rightmost path in Ti+1, and

thus is never traversed again. An edge in an intermediate tree Ti corresponds to a path

5

